If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+18-15x=0
a = 3; b = -15; c = +18;
Δ = b2-4ac
Δ = -152-4·3·18
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3}{2*3}=\frac{12}{6} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3}{2*3}=\frac{18}{6} =3 $
| E^x=11 | | -(2h+4)=5(h-1)+3 | | 16t^2=20t | | 4^3x-4=2^2x+4 | | 4^y+6=15 | | s2+11+24=0 | | 3x^2+2=0.1-x | | 3(4q-4)=36 | | 3x+(5x×2)=25 | | 2x+10=2(36+)10=48+10=58 | | -13x=x+5 | | x-(x*0.2)=10 | | 5(x-2)=9x+3-4x | | 3x(x-3)=11x^2-12x | | X=1350+.12x | | m2− 2= 1 | | −4x+3=−11 | | 10=-8+2m | | 73-2x=9-2x | | 2^3x=8 | | 15+2d=-5 | | 5x=16+x. | | 2j+-3=15 | | b/3-14=-10 | | -2(1–z)+3=7 | | 6+9+4x-19=180 | | b/2-12=-8 | | 6x+3+7x-19=180 | | -3=-9+3y | | -8x-10-7x=20 | | 3v+17=8+2v | | -8x-10+7x=20 |